Standard Test Methods of Chemical Analysis of Red Lead¹ This standard is issued under the fixed designation D49; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. ## 1. Scope - 1.1 These test methods cover procedures for the chemical analysis of red lead having the approximate formula Pb₃O₄ (probably PbO₂·2PbO). - 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. - 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. #### 2. Referenced Documents - 2.1 ASTM Standards:² - D50 Test Methods for Chemical Analysis of Yellow, Orange, Red, and Brown Pigments Containing Iron and Manganese - D215 Practice for the Chemical Analysis of White Linseed Oil Paints (Withdrawn 2005)³ - D280 Test Methods for Hygroscopic Moisture (and Other Matter Volatile Under the Test Conditions) in Pigments - D1193 Specification for Reagent Water - D1208 Test Methods for Common Properties of Certain Pigments - D1301 Test Methods for Chemical Analysis of White Lead Pigments - D1959 Test Method for Iodine Value of Drying Oils and Fatty Acids (Withdrawn 2006)³ ## 3. Treatment of Sample 3.1 If the pigment is lumpy or not finely ground, grind it to a fine powder and mix thoroughly. Large samples may be ¹ These test methods are under the jurisdiction of ASTM Committee D01 on Paint and Related Coatings, Materials, and Applications and are the direct responsibility of Subcommittee D01.31 on Pigment Specifications. Current edition approved Dec. 1, 2014. Published December 2014. Originally approved in 1917. Last previous edition approved in 2008 as D49 – 83 ($2008^{\rm gl}$). DOI: 10.1520/D0049-83R0814. thoroughly mixed and a representative portion taken and powdered if lumpy or not finely ground. The sample in all cases shall be thoroughly mixed before taking portions for analysis. All samples shall be preserved in stoppered bottles or containers. ### 4. Purity of Reagents - 4.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society where such specifications are available.⁴ Other grades may be used provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. - 4.2 Unless otherwise indicated, references to water shall be understood to mean reagent water conforming to Type II of Specification D1193. ## 5. Moisture 5.1 Determine moisture content with a 2-g specimen in accordance with Method A of Test Methods D280. The specimen is dried for 2 h at 105°C. The loss in weight is considered as moisture. ## 6. Organic Color 6.1 Boil 2 g of the sample with 25 mL of 95 % ethyl alcohol, let settle, decant the supernatant liquid; boil the residue with 25 mL of distilled water and decant as before; boil the residue with 25 mL of diluted NH₄OH (1+4) and again decant. Boil another 2-g portion of the sample with 25 mL of chloroform, let settle, and decant the supernatant liquid. If any one of the above solutions is colored, organic coloring matter is indicated. If the solutions remain colorless, organic colors are probably absent. Note 1—If it is desired to test for organic colors resistant to the above reagents, the test procedures described in the following books may be ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ³ The last approved version of this historical standard is referenced on www.astm.org. ⁴ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD used, taking into account the nature of the pigment involved (1,2,3).5 ### 7. Total Lead and Insoluble Matter 7.1 Treat 1 g of the sample with 15 mL of HNO $_3$ (1 + 1) and sufficient $\rm H_2O_2$ to dissolve all PbO $_2$ on warming. If any insoluble matter is present, add 25 mL of water, boil, filter, and wash with hot water. The insoluble matter contains free SiO $_2$ and should be examined for BaSO $_4$ and silicates, if appreciable. 7.2 To the original solution or filtrate from the insoluble matter add 20 mL of H_2SO_4 (sp gr 1.84) and evaporate to SO_3 fumes. Cool, add 150 mL of water, and 150 mL of 95 % ethyl alcohol, let stand cold for 2 h, filter, on a Gooch crucible, wash with 95 % alcohol, dry at 105 to 110°C, and weigh as $PbSO_4$. Calculate to PbO. 7.3 Red lead is rarely adulterated, but should the specimen contain soluble barium compounds, the PbSO₄ obtained in 8.2 will contain BaSO₄. In this case, precipitate the lead as sulfide from a slightly acid (HCl) solution, dissolve the PbS in hot diluted HNO₃, and determine the lead as sulfate or chromate. 7.4 If the specimen contains significant amounts of calcium or magnesium, boil the $HNO_3 - H_2O_2$ solution (7.1) until all the lead is converted into nitrate and then determine the lead as $PbCrO_4$. 7.5 If soluble barium, calcium, or magnesium are to be determined, precipitate the lead as sulfide from a slightly acid solution (HCl), dissolve the PbS in hot diluted HNO₃, and determine the lead as sulfate. Boil the filtrate from the PbS to expel H₂S, add a little bromine water to oxidize iron (if present), boil to expel bromine, and precipitate the barium with a few millilitres of H_2SO_4 (1 + 3). Filter and weigh as $BaSO_4$. Calculate to BaO or BaCO₃. To the filtrate from the BaSO₄ add NH₄OH in slight excess, filter off any precipitate of Fe(OH)₃ + Al(OH)₃, wash with hot water. Manganese, if present, can be precipitated by adding bromine and NH₄OH and warming. Filter, wash with hot water, ignite, and weigh as Mn₃O₄. Unite all the filtrates, make slightly acid with acetic acid, heat to boiling and pass H₂S into the hot solution until saturated (20 to 30 min); add 5 g of NH₄Cl and let stand 5 h, filter off any ZnS, wash with H₂S water, dissolve the ZnS in hot diluted HCl and determine the zinc by titration with K₄Fe(CN)₆. Or, boil off the H₂S, filter out any separated sulfur and determine the zinc as Zn₂P₂O₇. Calcium may be determined in the filtrate from the ZnS by expelling H₂S and then adding NH₄OH and ammonium oxalate. Titrate the calcium oxide precipitate using the procedure described in 13.3 of Test Methods D50. In the filtrate from calcium determine magnesium by precipitating with sodium phosphate solution, finally weighing as $Mg_2P_2O_7$. #### 8. Lead Peroxide (PbO₂) and True Red Lead (Pb₃O₄) Note 2—Method of Diehl (4) modified by Topf (5)—not applicable when substances are present, other than oxides of lead, that liberate iodine under conditions given, or substances such as metallic lead which reduce PbO₂ to PbO without the liberation of iodine. 8.1 Solutions Required: (a) Red Lead Solution—Dissolve in 1-L beaker 600 g of crystallized sodium acetate and 48 g of KI in about 500 mL of acetic acid (1 + 3) (made by mixing 150 mL of glacial acetic acid with 450 mL of water). Warm the beaker and contents on a steam bath, stirring occasionally, until a clear solution is obtained. Cool this solution to room temperature, dilute to exactly 1000 mL with the acetic acid (1 + 3) and mix thoroughly. If preferred, the red lead solution may be prepared separately for each titration, as follows: Dissolve 30 g of the crystallized sodium acetate and 2.4 g of KI in 25 mL of the acetic acid (1 + 3), warming gently and stirring until a clear solution is obtained. Cool this solution to room temperature, dilute to 50 mL with the acetic acid solution (1 + 3), and mix thoroughly. 8.2 Sodium Thiosulfate Solution (0.1N)—Dissolve 24.83 g of sodium thiosulfate $(Na_2S_2O_3\cdot 5H_2O)$, freshly pulverized and dried between filter paper, and dilute with water to 1 litre at the temperature at which the titrations are to be made. The solution is best made with well-boiled water free from CO_2 , or let stand 8 to 14 days before standardizing, as described in Section 5 of Test Method D1959. 8.3 Starch Solution—Stir 2 to 3 g of potato starch with 100 mL of salicylic acid solution (1 %), and boil the mixture until the starch is practically dissolved, then dilute to 1 L (Note 3), or prepare as described in 7.8.2 of Test Method D1959. Note 3—Lead Peroxide—If the pigment contains an appreciable amount of nitrite (nitrate has no effect on the method), leach out water-soluble matter as below, dry the residue and determine PbO_2 as above, calculating to basis of original specimen. #### 9. Procedure 9.1 Weigh 1 g of the finely ground sample, transfer to a 200-mL Erlenmeyer flask, add 20 mL of water; then add as quickly as possible 40 mL of the "red lead solution" at room temperature. If the sample is red lead that has been extracted from a paint or paste, in place of the water use 10 mL of a mixture of 7 parts by volume of chloroform and 3 parts by volume of glacial acetic acid, and then add without delay the red lead solution. Add 30 mL of water containing 5 or 6 g of sodium acetate and titrate at once with $0.1 N \text{ Na}_2\text{S}_2\text{O}_3$ solution, adding the latter rather slowly and keeping the liquid constantly in motion by whirling the flask. When the solution has become light yellow, rub-up any undissolved particles with the rod until free iodine no longer forms, wash off rod, add the Na₂S₂O₃ solution until pale yellow, add starch solution, and titrate until colorless. Add the 0.1 N iodine solution until blue color is just restored and subtract the amount used for the volume of Na₂S₂O₃ that had been added. #### 10. Calculation 10.1 Calculate the lead peroxide and true red lead contents as follows: $PbO_{2} = I \times 0.942$ $Pb_3O_4 = PbO_2 \times 2.866 = I \times 2.7$ where: I = iodine value of the Na₂S₂O₃ solution, ⁵ The boldface numbers in parentheses refer to a list of references at the end of these test methods. $$0.942 = \frac{PbO_2}{I_2} = \frac{239.19}{253.81}$$, and (1) $$2.86616 = \frac{Pb_3O_4}{PbO_2} = \frac{685.57}{239.19}$$ #### 11. Zinc 11.1 If the volume is appreciable, evaporate off the alcohol from the filtrate from total lead, make alkaline with NH₄OH, then acid with HCl (sp gr 1.19), add 3 mL more of HCl, dilute to about 250 mL with water, heat nearly to boiling and titrate with standard K₄Fe(CN)₆ solution in accordance with 16.1.11 of Practice D215. Report as ZnO (includes cadmium). Iron, copper, or other interfering substances should first be removed as described in 25.2.3 of Practice D215. #### 12. Matter Soluble in Water 12.1 Determine the amount of water soluble material present in accordance with the procedure in Section 5 of Test Methods D1208 or determine in accordance with Test Methods D1301. #### 13. Total Silica 13.1 Digest 5 g of the sample in a covered casserole with 5 mL of HCl and 15 mL of HNO $_3$ (1 + 1). Evaporate to dryness to dehydrate. Cool, treat with hot water and HNO $_3$, boil, filter, wash with hot acid ammonium acetate solution, then dilute HCl and finally hot water. Ignite and weigh as SiO $_2$. The residue may be treated with $\rm H_2SO_4$ and HF in cases of doubt as to purity. #### 14. Carbon Dioxide 14.1 Determine carbon dioxide by the evolution method, using diluted HCl and stannous chloride. # 15. Soluble Sulfates 15.1 Sulfates Other Than Barium Sulfate—Treat 0.5 g of the sample with 5 mL of water, 3 g of NH₄Cl, and 5 mL of HCl saturated with bromine. Digest (covered) on steam bath about 15 min. Add 25 mL of water, neutralize with dry Na₂CO₃, and add about 2 g more. Boil 10 to 15 min, let settle, dilute with hot water, filter, and wash with hot water. Redissolve in HCl, reprecipitate as above, and wash thoroughly with hot water. Acidify the united filtrates with HCl, adding a slight excess; boil and add a slight excess of $BaCl_2$ solution (10 %). Let stand on a steam bath for 1 h. Filter and wash with hot water. Ignite and weigh as $BaSO_4$. Calculate to SO_3 (includes SO_3 formed from SO_2). 15.2 Or, dissolve 0.5 g of the sample in 25 mL of water, 10 mL of NH₄OH (sp gr 0.90) and HCl in slight excess; dilute to about 150 mL with water and add a piece of aluminum foil which should about cover the bottom of the beaker (being held on the bottom by means of a stirring rod). Heat gently till all lead is precipitated, decant through a filter, pressing the lead sponge with a flattened rod, and washing with hot water. Add to the filtrate a little bromine water, boil until bromine is expelled, add 15 mL of BaCl₂ solution (10 %), let stand on a steam bath for 1 h, filter, wash with hot water, ignite, and weigh as BaSO₄ (any SrSO₄ present is not decomposed in this method).⁶ #### 16. Iron Oxide 16.1 Determine iron oxide in accordance with Section 12 of Test Methods D50, or in a large beaker, treat 20 g of the sample with 20 mL of water, 20 mL of HNO₃ (sp gr 1.42), and 3 mL of formaldehyde solution. Warm until all PbO₂ is dissolved, dilute with water, warm, filter off insoluble matter, and wash with hot water. Ignite filter and insoluble matter, and evaporate with H₂SO₄ and HF. To filtrate from insoluble matter add 14 mL of H₂SO₄ (1 + 1), filter off PbSO₄, and wash. Dissolve the residue from HF and H₂SO₄ in H₂SO₄ and add to the filtrate from PbSO₄. Dilute to 500 mL and determine iron colorimetrically in an aliquot, using the same amounts of HNO₃, H₂SO₄, and formaldehyde in the comparison solution Ref (7). Calculate to Fe₂O₃. ## 17. Keywords 17.1 chemicals analysis; lead dioxide; red lead; tetra lead oxide #### REFERENCES - (1) Zerr, and Mayer, Tests for Coal Tar Colors in Aniline Lakes. - (2) Schultz, and Julius, A Systematic Survey of the Organic Coloring Matters. - (3) Mulliken, Identification of Pure Organic Compounds; Commercial Dyestuffs, Vol III. - (4) Dinglers, Dinglers Polytechnisches Journal, DPJOA, Vol 246, p. 196. - (5) Zeitschrift für Analytische Chemie, ZANCA, Vol 26, p. 296. - (6) Skoog, D. A. and West, D. M., Fundamentals of Analytical Chemistry, Holt, Rinehart and Winston, Inc., New York, 1969, p. 192. - (7) Lunge-Berl, "Chemische-technisch Untersuchungs-Methoden," Vol 2, p. 95, 6th Ed. ⁶ The solubility of BaSO₄ is increased by the presence of aluminum chloride (6). ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/