

Designation: D3289 - 17

Standard Test Method for Density of Semi-Solid and Solid Asphalt Materials (Nickel Crucible Method)¹

This standard is issued under the fixed designation D3289; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the density of semi-solid and solid asphalt materials by weighing in air and in water.

Note 1—An alternate method for determining the density of semi-solid and solid asphalt materials is Test Method D70. For materials which are too fluid for use of this method, use Test Method D3142.

- 1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
- 1.3 Warning— Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury or its vapor may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for details and EPA's website—www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.
- 1.4 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials

D70 Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method)

D140 Practice for Sampling Bituminous Materials

D3142 Test Method for Specific Gravity, API Gravity, or Density of Cutback Asphalts by Hydrometer Method

D4311 Practice for Determining Asphalt Volume Correction to a Base Temperature

E1 Specification for ASTM Liquid-in-Glass Thermometers 2.2 Other

CRC Handbook of Chemistry and Physics

3. Terminology

- 3.1 density—the mass per unit volume of a material.
- 3.2 *relative density*—the ratio of the mass of a given volume of a material to the mass of the same volume of water at the same temperature (Note 2).

Note 2—Relative density is also called specific gravity.

4. Summary of Test Method

4.1 The sample is placed in a nickel crucible and weighed in air, and then in water at the test temperature. The density is calculated from the mass of the sample and its apparent mass when weighed in water.

5. Significance and Use

5.1 Values of density are used for converting volumes to units of mass, and for correcting measured volumes from the temperature of measurement to a standard temperature using Practice D4311.

6. Apparatus

- 6.1 *Crucible*, nickel, high-form, approx. 30-mL capacity, approx. 43 mm in height by approx. 41 mm in diameter.
- 6.2 *Bath*, constant-temperature, capable of maintaining the test temperature within ± 0.1 °C.
- 6.3 Thermometric Device, calibrated liquid-in-glass, total-immersion type, of suitable range with graduations at least every 0.1 °C and a maximum scale error 0.1 °C as prescribed in Specification E1. Thermometer commonly used is 63C (63F). Any other thermometric device of equal accuracy may be used.

¹ This test method is under the jurisdiction of ASTM Committee D04 on Road and Paving Materials and is the direct responsibility of Subcommittee D04.47 on Miscellaneous Asphalt Tests.

Current edition approved March 15, 2017. Published March 2017. Originally approved in 1974. Last previous edition approved in 2008 as D3289 – 08. DOI: 10.1520/D3289-17.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- 6.4 *Balance*, capable of weighing to 0.001 g. It shall be fitted with a pan straddle and a wire basket, as shown in Fig. 1.
- 6.5 Basket and Pan Straddle, capable of holding the crucible in air or in water by suspending from the balance beam, as shown in Fig. 1. The basket may be made out of soft 0.81-mm (No. 20) copper wire or equivalent. The straddle may be made out of approx. 0.81-mm (20-gauge) aluminum sheeting formed to provide support of the beaker while permitting free movement of the pan.

7. Material

7.1 *Water*—Freshly boiled and cooled distilled or deionized water, free of visual contaminates. Water greater than three days post boiling and cooling shall not be used.

8. Sampling

- 8.1 Take samples in accordance with Practice D140. The sample shall be free of foreign substances.
- 8.2 Thoroughly mix the sample before removing a representative portion for testing.

9. Procedure

- 9.1 Place the clean, dry nickel crucible in the wire basket and suspend the basket from one arm of the balance. Weigh to the nearest 0.001 g and record the combined mass as W_1 .
- 9.2 Fill a 600-mL or larger Griffin low-form beaker with distilled water, which is freshly boiled and cooled to test temperature and place it on the pan straddle. Suspend the

basket containing the empty crucible from the balance arm so that the crucible is immersed in the water. Weigh to the nearest 0.001 g and record the apparent mass as W_2 .

- 9.3 Remove the crucible from the basket and dry.
- 9.4 Preparation of Sample—Heat the sample with care, stirring to prevent local overheating, until the sample has become sufficiently fluid to pour. In no case should the temperature be raised to more than 55 °C above the expected softening point for tar, or to more than 110 °C above the expected softening point for asphalt. Do not heat for more than 60 min, and avoid incorporating air bubbles into the sample.
- 9.5 Warm the crucible in a 120 °C oven for 10 min, then fill the dried crucible nearly full with the sample. Allow to cool to ambient temperature for a period of not less than 40 min, suspend in the basket and weigh to the nearest 0.001 g. Record the mass of the crucible and basket plus the sample as W.
- 9.6 Remove the crucible from the basket and immerse it in the water bath maintained within ± 0.1 °C of the test temperature. Allow to remain in the water for at least 30 min.
- 9.7 At the end of 30 min, remove the crucible from the bath and insert it in the basket. Place the beaker filled with distilled water at the test temperature ± 0.1 °C on the pan straddle. Suspend the basket containing the crucible from the balance arm so that the crucible is immersed in the water in the beaker. Weigh to the nearest 0.001 g and record the apparent mass as W_3 .

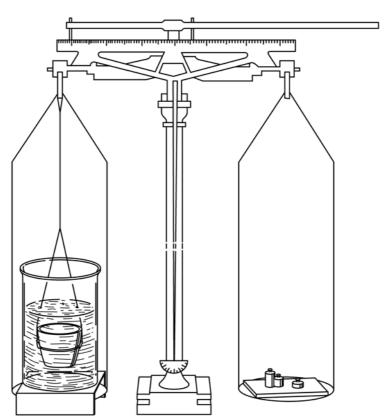


FIG. 1 Analytical Balance Equipped with Crucible Holder, Immersion Beaker, and Pan Straddle

10. Calculation

10.1 Calculate the relative density as follows:

relative density =
$$(W - W_1)/[(W - W_1) - (W_3 - W_2)]$$
 (1)

where:

W = mass of the crucible containing the sample suspended in the basket in the air, g,

 W_1 = apparent mass of the empty crucible suspended in the basket in the air, g,

 W_2 = mass of the empty crucible suspended in the basket in the water, g, and

 W_3 = apparent mass of the crucible containing the sample suspended in the basket in water, g.

10.2 Calculate density as follows:

Density = relative density
$$\times W_T$$
 (2)

where:

 W_T = density of water at the test temperature (Note 3).

Note 3—Density of water from CRC Handbook of Chemistry and Physics:

Test Temperature, °C	Density of Water, kg/m³ (kg/L)
15.0	999.1 (0.9991)
25	997.0 (0.9970)

11. Report

11.1 Report the density to the nearest 1 kg/m 3 (0.001 kg/L) and the test temperature.

12. Precision and Bias

12.1 *Single-Operator Precision*—The single-operator standard deviation of the relative density has been found to be 0.00058. Therefore, the results of two properly conducted tests by the same operator on the same asphalt should not differ by more than 1.6 kg/m³ (0.0016 kg/L). See Note 4.

12.2 Multilaboratory Precision—The multilaboratory standard deviation of the relative density has been found to be 0.00072. Therefore, the results of two properly conducted tests by two laboratories on the same material should not differ by more than 2.0 kg/m³ (0.0020 kg/L). See Note 4.

Note 4—These numbers represent the 1S and D2S limits as described in Practice C670. The precision of tests at 15.0 $^{\circ}$ C has been taken to be the same as at 15.6 $^{\circ}$ C.

12.3 *Bias*—No information can be presented on the bias of the procedure in this test method for measuring density because no material having an accepted reference value is available.

13. Keywords

13.1 asphalt; asphalt material; density; nickel crucible

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/