

Designation: D2517 - 06 (Reapproved 2011)

Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings¹

This standard is issued under the fixed designation D2517; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification covers requirements and methods of test for materials, dimensions and tolerances, hydrostatic-burst strength, chemical resistance, and longitudinal tensile properties, for reinforced epoxy resin pipe and fittings for use in gas mains and services for direct burial and insertion applications. The pipe and fittings covered by this specification are intended for use in the distribution of natural gas, petroleum fuels (propane–air and propane–butane vapor mixtures), manufactured and mixed gases where resistance to gas permeation, toughness, resistance to corrosion, aging, and deterioration from water, gas, and gas additives are required. Methods of marking are also given. Design considerations are discussed in Appendix X1.
 - 1.2 The values in SI units are to be regarded as the standard.
- 1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: *This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.*

Note 1—There is no known ISO equivalent to this standard.

1.4 A recommended inplant quality control program is given in Appendix X2.

2. Referenced Documents

2.1 ASTM Standards:²

D396 Specification for Fuel Oils

D543 Practices for Evaluating the Resistance of Plastics to Chemical Reagents

D618 Practice for Conditioning Plastics for Testing

D883 Terminology Relating to Plastics

D1598 Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure

D1599 Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings

D1898 Practice for Sampling of Plastics (Withdrawn 1998)³
D2105 Test Method for Longitudinal Tensile Properties of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Tube

D2143 Test Method for Cyclic Pressure Strength of Reinforced, Thermosetting Plastic Pipe

D2290 Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method

D2412 Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading

D2924 Test Method for External Pressure Resistance of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

D2992 Practice for Obtaining Hydrostatic or Pressure Design Basis for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings

D2996 Specification for Filament-Wound "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

D3567 Practice for Determining Dimensions of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting Resin) Pipe and Fittings

D3839 Guide for Underground Installation of "Fiberglass" (Glass-FiberReinforced Thermosetting-Resin) Pipe

D3892 Practice for Packaging/Packing of Plastics

D5685 Specification for "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe Fittings
F412 Terminology Relating to Plastic Piping Systems

3. Terminology

3.1 Definitions:

3.1.1 *General*—Definitions are in accordance with Terminology D883 or F412. Abbreviations are in accordance with Terminology D1600, unless otherwise indicated. The abbreviation for fiberglass pipe is RTRP and the abbreviation for fiberglass fittings is RTRF.

¹ This specification is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.23 on Reinforced Plastic Piping Systems and Chemical Equipment.

Current edition approved Nov. 15, 2011. Published March 2012. Originally approved in 1966. Last previous edition approved in 2006 as D2517 – 06. DOI: 10.1520/D2517-06R11.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

- 3.1.2 The gas industry technology used in this specification is in accordance with definitions given in The Department of Transportation of Natural and Other Gas by Pipeline Minimum Safety Standards.
- 3.1.3 Standards Reinforced Thermosetting Resin Pipe Materials Designation Code—The pipe material designation code shall consist of the abbreviation RTRP followed by type and grade in arabic numerals, class by a capital letter and the long term steady pressure strength by a second capital letter. The fittings material designation shall consist of the abbreviation RTRF followed by type (method of manufacture), grade (general type of resin), class (configuration of joining system), and pressure rating.

4. Classification

- 4.1 *Pipe*—The pipe covered in this specification is made by the filament winding process and is described in Specification D2996. Requirements of this pipe are based on short-term tests defined in this specification.
- 4.2 Fittings—This specification covers a) reinforced epoxy resin fittings described in specification D5685 and made of the type of materials covered in Section 5, and b) metal fittings which have been designed and tested in accordance with the provisions of The Department of Transportation Title 49 of The Code of Federal Regulations Part 192 Transportation of Natural Gas and Other Gas by Pipeline: Minimum Federal Safety Standards, which are capable of being joined to the pipe and will provide a suitable gas distribution system.

5. Materials

- 5.1 The resins and reinforcements used to make pipe shall be as specified in 5.1.1.
- 5.1.1 This specification covers glass fiber reinforced epoxy resin pipe and fittings as defined in Specification D2996 as Type 1; Grade 1; Classes A, C, and H; and Hydrostatic Design Basis U, W, X, Y, and Z—Example: RTRP 11 HZ and fittings as defined in specification D5685-RTRF 11A1D, RTRF 21A1D, RTRF 11F2D and RTRF 21A2D.

Note 2—The particular reinforced thermosetting resin included initially in this specification for gas pressure piping was selected on the basis of engineering test studies made by Battelle Memorial Institute, experimental use in field installations, and technical data supplied by the manufacturers of the plastics materials used to make the pipe and fittings. It is the intent of ASTM Committee D-20 on Plastics to consider for inclusion other resins and reinforcements in this specification when evidence is presented to show that they are suitable for gas service. Minimum requirements are an ASTM pipe specification and long-term strength determined in accordance with Test Method D2992, Procedure B, in addition to the requirements of this specification.

6. Requirements

- 6.1 Workmanship—The pipe and fittings shall be free of visible cracks, holes, foreign inclusions, blisters, and other injurious defects. The pipe and fittings shall be as uniform as commercially practicable in color, opacity, density, and other physical properties.
 - 6.2 Pipe Dimensions and Tolerances:
- 6.2.1 *Diameters*—The outside diameter of the pipe shall be in accordance with Table 1 when measured in accordance with 8.4.1.
- 6.2.2 *Wall Thickness*—The wall thickness of the pipe shall meet the requirements given in Table 1 when measured in accordance with 8.4.1.
- 6.2.3 *Lengths*—The pipe shall be in lengths as specified on the purchase order when measured in accordance with 8.4.1.
- Note 3—Either threaded adaptors or bonded joints are acceptable. Jointers of up to 5 % of the shipment are acceptable to meet the length requirements. No section less than 1.5 m (5 ft) long can be used to make a joint and only one jointer can be used in a length.
- 6.3 Fittings Dimensions and Tolerances— The fittings dimensions shall enable the pipe and fittings to be joined and shall be measured in accordance with 8.4.2.

Note 4—Subcommittee D 20.23 is working towards development of dimensional requirements for fittings; however, it will be some time before the requirements are available. Therefore, the method of measuring is provided only to have a standard method of measuring fittings dimensions for inspection purposes.

- 6.4 Short-Term Rupture Strength (Burst Pressure)—The minimum hoop stress at burst for pipe covered by this specification shall be as listed in Table 2 when tested in accordance with 8.5. The minimum burst requirements for fittings covered by this specification shall be 4.82 MPa (700 psi) internal pressure or 27.5 MPa (4000 psi) hoop tensile stress, whichever is greater, when tested in accordance with 8.5 at temperatures of 23°C (73.4°F) and 65.6°C (150°F), and calculated using the equation listed in Test Method D1599 for hoop stress. The calculations shall use the fittings wall thickness and diameter at a point where the wall thickness is at a minimum and which is also in the section of the fittings which is not reinforced by the pipe.
- 6.5 *Crush Strength*—The minimum stiffness factor at 5 % deflection of the pipe shall be as shown in Table 2 when tested in accordance with Test Method D2412.
- 6.6 Chemical Resistance—The pipe shall not change more than $\pm 12\%$ in apparent tensile strength when measured in accordance with 8.7.

TABLE 1 Pipe Dimensions, mm (in.)

Nominal	Outside Diameter	Tolerance	Minimum Wall Thickness
2	60.325 (2.375)	+1.524, -0.457 (+0.060, -0.018)	1.524 (0.060)
3	88.900 (3.500)	+1.524, -0.457 (+0.060, -0.018)	1.524 (0.060)
4	114.300 (4.500)	+1.524, -0.457 (+0.060, -0.018)	1.780 (0.070)
6	168.275 (6.625)	+1.678, -0.711 (+0.066, -0.028)	2.540 (0.100)
8	219.075 (8.625)	+2.184, -1.016 (+0.086, -0.040)	3.227 (0.125)
10	273.050 (10.750)	+2.743, -1.219 (+0.108, -0.048)	3.830 (0.150)
12	323.850 (12.750)	+3.251, -1.422 (+0.128, -0.056)	4.215 (0.175)

TABLE 2 Minimum Physical Property Requirements for Pipe

Physical Property	Test Method	23°C (73.4°F)	65.6°C (150°F)
Short-term rupture strength (burst) min, hoop stress, psi	D1599	35 000	40 000
Static hydrostatic hoop stress 10 ⁵ h (estimated), min, psi	D2992	15 000	14 000
Hydrostatic collapse min, psig	D2924	14.7	11.0
Longitudinal tensile strength, min, psi	D2105	8 900	8 300
Parallel plate crush strength, min pipe stiffness factor at 5% deflection	D2412	45	41

Note 5—A suitable chemical resistance test for fittings is not available at the present time and will be added when available.

- 6.7 Longitudinal (Tensile Strength)—The minimum longitudinal tensile strength for pipe covered by this specification shall be as listed in Table 2 when tested in accordance with Test Method D2105.
- 6.8 *Hydrostatic Collapse*—The minimum factor for pipe covered by this specification shall be as listed in Table 2 when tested in accordance with Test Method D2924.

7. Adhesive Requirements

7.1 Adhesives used to join reinforced epoxy resin pipe shall be suitable for use with the pipe and fittings and meet the requirements listed in 7.2 and 7.3.

Note 6—It is recommended that the working (pot) life of the adhesive be agreed upon between the purchaser and the manufacturer.

- 7.2 Adhesive Test—All adhesives covered by this specification shall have a minimum ultimate shear strength of 10.3 MPa (1500 psi) when tested in accordance with 8.8.
- 7.3 *Packaging*—Each adhesive kit shall contain the necessary components and instruction sheets, which shall include cure times and pot life.

8. Test Methods

- 8.1 Sampling—Take a sample of the pipe and fittings sufficient to determine conformance with this specification. About 15 m (50 ft) of pipe or tubing are required to make the tests prescribed. The number of fittings required varies, depending upon the size and type of fitting. It is suggested that a sampling plan be agreed upon by the purchaser and the manufacturer (see Practice D1898).
- 8.2 Conditioning—Unless otherwise specified, condition the specimens prior to test at $23 \pm 2^{\circ}\text{C}$ (73.4 \pm 3.6°F) and 50 \pm 5% relative humidity for not less than 48 h, in accordance with Procedure A of Practice D618 for those tests where conditioning is required and in all cases of disagreement.
- 8.3 *Test Conditions*—Conduct the tests in the Standard Laboratory Atmosphere of 23 \pm 2°C (73.4 \pm 3.6°F), unless otherwise specified.
 - 8.4 Dimensions and Tolerances:
- 8.4.1 Wall Thickness and Diameter—Determine in accordance with Practice D3567.

- 8.4.2 *Liner Thickness*—When the test specimens contain a liner, determine the average liner thickness in accordance with Practice D3567.
- 8.5 Short-Term Hydrostatic Failure Strength (Minimum Hoop Stress)—Determine in accordance with Test Method D1599. Fittings shall be tested with pipe nipples bonded in the sockets.
- 8.6 Apparent Tensile Properties—The apparent tensile strength shall be determined in accordance with Procedure B of Test Method D2290.
- 8.7 *Chemical Resistance*—Determine the resistance to the following chemicals in accordance with Procedure II of Test Method D543, except use ring specimens cut from pipe for this purpose:

Chemical	Concentration, %
Fuel Oil No. 1 (Specification D396)	100
t-butyl mercaptan	5 in fuel oil
Antifreeze agents (at least one shall be used):	
Methanol	100
Isopropanol	100
Ethylene glycol	100

Cut specimens from the pipe in accordance with 8.6; test five specimens with each reagent. Coat specimen edges with adhesive prior to immersion. Completely immerse the specimens in the chemicals for 72 h. Upon removal from the chemicals, wipe the specimens with a clean dry cloth, condition in the testing room for a period not to exceed 2 h, and then test in tension in accordance with 8.6.

- 8.8 Adhesive Test—The ultimate shear strength for adhesives used to bond pipe and fittings together shall be determined in accordance with the following procedure; it is applicable to all adhesives covered by this specification.
- 8.8.1 *Principle*—Laboratory shear specimens are made by bonding together two 3 by 13 by 75-mm (½ by ½ by 3-in.), reinforced thermosetting plastic laminates using the supplied adhesive kits. This specimen is then cured in accordance with instructions supplied with the adhesive. After curing, the specimen is pulled apart in a universal testing machine.
- 8.8.2 Test Specimen—The test specimen shall be made using longitudinally reinforced epoxy resin laminates that are made of the same materials as the pipe with dimensions of 5 by 13 by 75 mm ($\frac{1}{8}$ by $\frac{1}{2}$ by 3 in.). Each specimen shall have a bonding surface on one end made by milling off 5 mils of the surface for a length of 2 mm ($\frac{3}{4}$ in.). Test a minimum of five test specimens.
 - 8.8.3 Procedure:
- 8.8.3.1 Clean the milled surfaces of two 75-mm (3-in.) long laminates using solvent supplied with adhesive.
- 8.8.3.2 Mix the adhesive components in accordance with instructions supplied with the adhesives.
- 8.8.3.3 Wet the cleaned surface of the laminates with the mixed adhesive.
- 8.8.3.4 Press the adhesive-coated areas of the laminates together, maintaining alignment of edges and clamp so that the specimen is held together using uniform pressure. Pressure used shall be sufficient to yield specimens with adhesive line thicknesses that do not exceed 0.9 mm (½2 in.).

8.8.3.5 Note the time when assembly is completed.

8.8.3.6 Check the temperature in the room and determine the cure time from instructions supplied with the adhesive.

8.8.3.7 When the required amount of time has elapsed, remove the specimen from the clamping fixture, and place it in grips of the universal testing machine. Good alignment in the grips is essential. Set speed control at 5.1 to 6.4 mm (0.20 to 0.25 in.)/min and start the testing machine. Record the breaking load.

8.8.4 *Calculation*—Calculate the ultimate shear strength of the adhesive using the following equation and report to three significant figures:

$$\sigma = P/A \tag{1}$$

where:

 σ = ultimate shear stress, MPa (or psi), P = ultimate load, N (or lbf), and

 $A = \text{bond area, mm}^2 \text{ (or in.}^2\text{)}.$

For each series of tests, calculate the arithmetic mean of all values obtained to three significant figures and report as the "average value." Calculate the standard deviation as follows and report to two significant figures:

$$s = \left[\left(\sum X \, 2 - n \overline{X}^{\, 2} \right) / (n = 1) \right]^{\frac{1}{2}} \tag{2}$$

where:

s = estimated standard deviation,
 X = value of a single observation,

n = number of observations, and

 \bar{X} = arithmetical average of the set of observations.

9. Packaging and Marking

9.1 *Pipe*—All required marking shall be legible and so applied without indentation as to remain legible under normal handling and installation practices. These markings shall consist of the manufacturer's name or trademark, the nominal pipe size, and the standard reinforced plastic pipe identification at each end of the pipe. In addition to the above, the pipe shall bear an appropriate code number which will ensure identification of the pipe as to the month and year of production and raw materials used in the production of said pipe. The manufacturer shall maintain such additional records as are necessary to confirm identification of all coded pipe. Marking shall include the designation ASTM D2517.

9.2 *Fittings*—All fittings shall be marked on the body or hub. The marking shall consist at least of the manufacturer's name or trademark, or both, and the symbol for the type of material and size. Marking shall include the designation ASTM D2517.

9.3 Adhesives—All adhesive containers shall be marked on the container. The marking shall consist of the manufacturer's name or trademark, or both, manufacturing date, shelf life, and storage requirements.

9.4 All packing, packaging, and marking provisions of Practice D3892 shall apply to this specification.

10. Keywords

10.1 filament wound; compression molded; configuration of joining system; rupture srength; crush strength; chemical resistance; apparent tensile properties; adhesive

APPENDIXES

(Nonmandatory Information)

X1. DESIGN

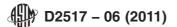
X1.1 General

X1.1.1 The design of a plastic piping system for gas must include consideration of the effect of the environment while under stress, as well as internal and external loads. The combined effects of time, stress, and environment must be investigated as an overall basis for selecting a specific kind and size of plastic pipe. The selection of design stresses for RTRP is the prerogative of the Department of Transportation (DOT) Office of Pipeline Safety. The AGA Plastic Pipe Committee and members of Committee D-20 are cooperating with DOT to provide assistance in selecting safe design stress levels for the various kinds of plastic pipe.

X1.2 Internal Pressure

X1.2.1 The design stresses for natural gas are based on the 100 000-h hydrostatic strength of the pipe of 75°F obtained in accordance with Procedure B of Practice D2992. The

100 000-h strengths of the plastics included in the applicable ASTM specifications are as follows:


Plastic Pipe Material Designation RTRP (glass fiber reinforced epoxy resin pipe)

Long-Term (100 000-h) Strength at 23°C (73°F) 15 000 psi

Strengths for other RTRP materials will be added when these materials are included in the applicable ASTM specifications. The design stresses are obtained by multiplying the 100 000-h strength by design factors or service factors in accordance with the class of location as described in Chapter IV of the ASME Code for Pressure Piping B31, ASME B 31.8, Gas Transmission and Distribution Piping System and The Department of Transportation Minimum Federal Safety Standards for Gas Lines (Part 192 Title 49 Code of Federal Regulations).

X1.3 External Loads

X1.3.1 It is recognized that certain minimum requirements exist for the support of earth loads from backfill and other

external forces. Proper installation techniques can be used with flexible conduit (as defined by Marston and Spangler)⁴ to support relatively large earth loads without excessive deflection by mobilizing lateral passive soil forces. Proper installa-

tion technique ensures that the necessary passive soil pressure at the sides of the pipe will be developed and maintained. It is also recognized that the internal pressures may be valuable in minimizing the deflection caused by earth loads. However, the magnitude of this latter effect is somewhat subjective, and therefore installation procedures defined in Test Method D3839 are recommended instead of more specific information.

X2. RECOMMENDED IN-PLANT QUALITY CONTROL PROGRAM FOR REINFORCED EPOXY RESIN PIPE INTENDED FOR USE IN NATURAL GAS SERVICE

X2.1 Introduction

X2.1.1 The following in-plant quality control program covering material, performance requirements, and marking shall be used in manufacture to provide reasonable assurance that the RTRP pipe and fittings for use with the type of RTRP supplied under this code meets the requirements of the applicable standard. The pipe and fittings producers shall maintain records on all aspects of this program and supply these to the purchaser, if requested.

X2.2 Material

X2.2.1 The pipe and fittings manufacturer shall use only those raw materials that are allowed by the applicable standard and shall so certify.

X2.3 Pipe Tests

X2.3.1 Product Quality Control (See Note X2.1)—The tests in Table X2.1 shall be made per size per processing unit at the denoted frequencies and the test results recorded and filed for inspection, upon request.

Note X2.1—When the pipe fails to meet the specification (or standard) requirement in any test, additional tests shall be made on the pipe produced back to the previous acceptable results to select the pipe produced in the interim that does pass the requirement. Pipe that does not meet the requirement shall be rejected.

X2.4 Test Methods

X2.4.1 The test methods may be those generally used by the manufacturer, but in case of question, those given in the applicable ASTM standard shall be used.

TABLE X2.1 Pipe Tests

Property	Test Method	Test Frequency
Visual		all
Dimensions:		
Diameter	D3567	900 m (3000 ft) or once/3h
Wall thickness	D3567	1500 m (5000 ft) or once/lot ^A
Mechanical properties:		
Burst pressure	D1599	5000 ft
Short-term static (20 h) or cyclic ^B	D1598 (D2143)	24 h

A Whichever is most frequent.

X2.5 Records

X2.5.1 A code number shall be included in the marking on the pipe. If required, on the directional fittings, the code number may be used to identify in the records the following:

X2.5.2 The compound,

X2.5.3 The date of manufacture,

X2.5.4 The shift,

X2.5.5 The test results required in this in-plant quality control program, and

X2.5.6 The manufacturer.

SUMMARY OF CHANGES

Committee D20 has identified the location of selected changes to this standard since the last issue, D2517–05, that may impact the use of this standard.(Approved April 1, 2006)

(1) Revised section 5.1.1.

Committee D20 has identified the location of the following changes to this standard since the last issue $(D2517-00^{\varepsilon 1})$ that may impact the use of this standard.

(1) Revised section 4.2.

(2) Revised section 5.1.1.

⁴ Spangler, M. G., "Secondary Stresses in Buried High Pressure Lines," The Iowa State College Bulletin, Engineering Report 23 of the Iowa Engineering Experiment Station, 1954–1955.

^B A cyclic pressure test made in accordance with the procedure in Test Method D2143 may be substituted for the static test requirements if it has been demonstrated that the results of the two methods are equivalent.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).